Polina Maksimovna Perebasova
-
The efficacy of ameliorants for remediation of soils contaminated with heavy metals, in a lab experimentMoscow University Bulletin. Series 17. Soil science. 2024. 1. p.105-118Ekaterina Ig. Kovaleva Polina M. Perebasova Danila An. Avdulov Dmitry V. Ladonin Sergey Ya. Trofimovread more571
-
The effectiveness of remediators in detoxification of soils contaminated with heavy metals was studied in a lab experiment. The objects of the study were the soils of the southern tundra, functioning under conditions of anthropogenic impact: Haplic Gleysols (Gelic) and Histic Fluvisols (Oxyaquic). The chemical ability of remediants to bind metals (Ni and Cu), transferring them to a sedentary state in comparison with the reference variants (without any addition of remediants), was evaluated. In experiments, remediants were used in three doses (D1, D2, D3): shungite; diatomite, glauconite and bentonite. To assess the immobilization of Ni and Cu in soils, acid-soluble (CR) forms (extraction of 1 n. HNO3), mobile forms (ammonium acetate buffer solution with pH 4.8), water-soluble forms of Ni and Cu (1:20 aqueous extract) were determined by inductively coupled plasma mass spectrometry. The effectiveness of soil detoxification during the application of remediants was evaluated by the phytotoxic effect in an express phytoassay with standardized tests (Brassica rapa CrGC and Avena sativa) represented by higher plants. A decrease in the proportion of mobile forms of Ni and Cu by 50% or more in Haplic Gleysols (Gelic) was revealed with the addition of any dose of ameliorants. The greatest effect of reducing mobility was exerted by shungite and diatomite at a dose of D1 — up to 15% Ni and Cu for Histic Fluvisols (Oxyaquic) soil. The use of the selected remediants in the indicated amounts did not reveal a phytotoxic effect on the tests in the experiment.
Keywords: nickel; copper; soil toxicity; southern tundra; mineral sorbents
-
-
The influence of erodibility degree of sod-podzolic soil on the abundance and diversity of fungi and actinomycetesMoscow University Bulletin. Series 17. Soil science. 2024. 3. p.28-37Valery V. Demidov Tatyana A. Gracheva Polina M. Perebasova Alla V. Golovchenko Alexey L. Stepanov Oleg A. Makarovread more247
-
The paper presents the results of assessing the eff ect of the degree of soil erodibility on the abundance and diversity of cultivated fungi and actinomycetes in diff erent seasons of the annual cycle. The objects of the study are sod—podzolic soils (Umbric Retisols (Abruptic)) of diff erent degrees of washout, located on the slope of the southeastern exposure (Moscow region, Solnechnogorsk district), used for a long time for the cultivation of agricultural crops. The indicators of microbial abundance were determined by the cup method, identifi cation was carried out on the basis of phenotypic characters. It is shown that the decline in physical and agrochemical parameters of the soil, which is a result of erosion processes, leads to a change in microbiological parameters. A decrease in the abundance and species diversity of fungi and actinomycetes was found with an increase in the degree of soil erosion. Significant diff erences were found in the taxonomic composition of microbial communities of non-eroded and washed away soils (the Sorensen species similarity coeffi cient does not exceed 0.42 for fungi and 0.30 for actinomycetes). Taxonomic units of mycelial microorganisms have been identifi ed. Among the fungi are representatives of the species Aspergillus, Cladosporium and Scopulariopsis, among the actinomycetes are Streptomyces malachitospinus, S. candidus and Micromonospora aurantiaca.Keywords: water erosion; erodibility; abundance; indicator species
-