ISSN 0137-0944
eISSN 2949-6144
En Ru
ISSN 0137-0944
eISSN 2949-6144
The degradation of glyphosate and its effect on microbial community of agrosod-podzolic soil under the short-term model experience conditions

The degradation of glyphosate and its effect on microbial community of agrosod-podzolic soil under the short-term model experience conditions

Abstract

In laboratory conditions, the decomposition of glyphosate with the formation of aminomethylphosphonic acid (AMPA) and its effect on the total abundance of bacteria and fungi, as well as the number of copies of genes encoding the enzymes C-P lyase of a-proteobacteria ( phnJ ), acid and alkaline phosphatase ( phoC and phoD ) and Fe-protein nitrogenase ( nifH ). It is shown that when applying glyphosate in recommended doses (5-10 mg/kg) 5-7% of the introduced herbicide is detected after 14 days, but when the dose is increased to 100 mg/kg, this value increases to 23%. Slowing down the rate of degradation of the herbicide appears only in the first week of incubation and is accompanied by a decrease in the number of copies of the phoC, phoD, nifH genes and an increase in the abundance of fungi. The obtained results indicate a predominant degradation of glyphosate with the C-P bond breaking and the formation of phosphates, as well as a possible inhibition of the nitrogen fixation process. It is shown that at an application dose of glyphosate 100 mg/kg, the accumulation of the first metabolite AMPA can occur during the degradation of the herbicide with a break in the C—N bond. Bioassay using wheat showed that when applying glyphosate at a dose of 100 mg/kg, there is an inhibition of plant development: the length of the roots and the biomass of the shoots reduced by 60 and 20% compared to the control, respectively. Based on the obtained data, it is proposed to use the reduction in the content of copies of the phoC gene and the growth of copies of ITS rRNA as indicators of the predominant decomposition of glyphosate through the sarcosin pathway. A reduction of copies of ITS rRNA gene by 40% or more can be used as an indicator of the possibility of AMPA accumulation during glyphosate degradation.

References

  1. Adelowo F.E., Olu-Arotiowa О,A,, Amuda O.S. Biodegradation of glyphosate by fungi species // Adv. Biosci. Bioengineer. 2014. Vol. 2 (1).

  2. Allegrini M.y Gomez E. V, del, Zabaloy M.C. Repeated glyphosate exposure induces shifts in nitrifying communities and metabolism of phenylpropanoids // Soil Biol. Biochem. 2017. Vol. 105.

  3. Araujo A.S.F., Monteiro R.T.R., Abarkeli R.B. Effect of glyphosate on the microbial activity of two Brazilian soils // Chemosphere. 2003. Vol. 52.

  4. Atherton F.R., Hall M.J.y Hassall С.H. et al. Antibacterial activity and mechanism of action of phosphonopeptides based on aminomethylphosphonic acid // Antimicrob. Agents Chemother. 1982. Vol. 22 (4).

  5. Banks M.L., Kennedy A.C., Kremer R.J., Eivazl F. Soil microbial community response to surfactants and herbicides in two soils // Appl. Soil Ecol. 2014. Vol. 74.

  6. Battaglin W.A., Meyer M.T., Kuivila KM., Dietze J.E. Glyphosate and its degradation product AMPA occur frequently and widely in U.S. soils, surface water, groundwater, and precipitation // J. Amer. Water Res. Assoc. 2014. Vol. 50(2).

  7. Blackshaw R.E., Harker KN. Wheat, field pea, and canola response to glyphosate and AMPA soil residue // Weed Technol. 2016. Vol. 30.

  8. Borggaard О.К, Gimsing L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review // Pest Manag. Sci. 2008. Vol. 64.

  9. Bott S., Tesfamariam T., Kania A. et al. Phytotoxicity of glyphosate soil residues re-mobilised by phosphate fertilization // Plant Soil. 2011. Vol. 342.

  10. Chen M.X., Cao Z.Y., Jiang Y., Zhu Z.W. Direct determination of glyphosate and its major metabolite, aminomethylphosphonic acid, in fruits and vegetables by mixed-mode hydrophilic interaction/weak anion-exchange liquid chromatography coupled with electrospray tandem mass spectrometry // J. Chromatogr. 2013. Vol. 1272.

  11. Chen X., Jiang N., Chen Z. et al. Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials // Appl. Soil Ecol. 2017. Vol. 119.

  12. Cherni A.E., Trabelsi D., Chebil S. et al. Effect of glyphosate on enzymatic activities, Rhizobiaceae and total bacterial communities in an agricultural Tunisian soil // Water, Air, Soil Poll. 2015. Vol. 226.

  13. Claassens A., Ros M. T., Van Zwieten L. et al. Soilborne glyphosate residue thresholds for wheat seedling metabolite profiles and fungal root endophyte colonization are lower than for biomass production in a sandy soil // Plant Soil. 2019. Vol. 438.

  14. Druart C., Delhomme O., de Vaufleury A. et al. Optimization of extraction procedure and chromatographic separation of glyphosate, glufosinate and aminomethylphosphonic acid in soil. // Analyt. Bioanalyt. Chem. 2011. Vol. 399.

  15. Erban T., Stehlik V., Sopko В. et al. The different behaviors of glyphosate and AMPA in compost-amended soil // Chemosphere. 2018. Vol. 207.

  16. Ermakova I. T.y Shushkova T. V, Sviridov A. V et al. Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Achromobacter sp. // Arch. Microbiol. 2017. Vol. 199.

  17. Fan L., Feng Yu., Weaver D.B. et al. Glyphosate effects on symbiotic nitrogen fixation in glyphosate-resistant soybean //Appl. Soil Ecol. 2017. Vol. 21.

  18. Fierer N., Jackson J.A., Vilgalys R., Jacksson R.B. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays // Appl. Environ. Microbiol. 2005. Vol. 71.

  19. Fraser T.D., Lynch D.H., Gaiero J. et al. Quantification of bacterial non-specific acid (phoC) and alkaline (phoD) phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields // Appl. Soil Ecol. 2017. Vol. 111.

  20. Karasali H., Pavlidis G., Marousopoulou A. Investigation of the presence of glyphosate and its major metabolite AMPA in Greek soils // Environ. Sci. Poll. Res. 2019. URL: https://doi.org/10.1007/sll356-019-06523-x.

  21. Kryuchkova Y.V., Bury gin G.L., Gogoleva N.E. et al. Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7 // Microbiol. Res. 2014. Vol. 169.

  22. Lancaster S.H., Hollister E.B., Senseman S.A., Gentry T.J. Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate // Pest Manag. Sci. 2010. Vol. 66.

  23. Liu C.-M., McLean P.A., Sookdeo C.C., Cannon F. C. Degradation of the herbicide glyphosate by members of the family Rhizobiaceae // Appl. Environ. Microbiol. 1991. Vol. 57.

  24. Milosevia N.A., Govedarica M.M. Effect of herbicides on microbiological properties of soil // Proc. Natural Sci. 2002. Vol. 102.

  25. Newman M.M., Hoilett N., Lorenz N. et al. Glyphosate effects on soil rhizosphere-associated bacterial communities // Sci. Total Environ. 2016. Vol. 543.

  26. Niemeyer J.C., Santo F.B. de, Guerra N. et al. Do recommended doses of glyphosate-based herbicides affect soil invertebrates? Field and laboratory screening tests to risk assessment // Chemosphere. 2018. Vol. 198.

  27. Okada E., Costa J.L., Bedmar F. Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage // Geoderma. 2016. Vol. 263.

  28. Okada E., Costa J.L., Bedmar F. Glyphosate dissipation in different soils under no-till and conventional tillage // Pedosphere. 2019. Vol. 29 (6).

  29. Pipke R., Amrhein N. Carbon-phosphorus lyase activity in permeabilized cells of Arthrobacter sp. GLP-1 // FEBS Letters. 1988. Vol. 236.

  30. Pizzul L., Castillo M.D.P., Stenstrom J. Degradation of glyphosate and other pesticides by ligninolytic enzymes // Biodegradation. 2009. Vol. 20.

  31. Poly F., Ranjard L., Nazaret S. et al. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties // Appl. Environ. Microbiol. 2001. Vol. 67.

  32. Ragot S.A., Kertesz M.A., Вйпетапп E.K. phoD alkaline phosphatase gene diversity in soil // Appl. Environ. Microbiol. 2015. Vol. 81.

  33. Reddy K.N., Rimando A.M., Duke S.O. Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean // J.   Agric. Food Chem. 2004. Vol. 52.

  34. Santos A., Flores M. Effects of glyphosate on nitrogen fixation of free-living heterotrophic bacteria // Lett. Appl. Microbiol. 1995. Vol. 20.

  35. Shehata A., Kiihnert M., Haufe S., Kruger M. Neutralization of the antimicrobial effect of glyphosate by humic acid in vitro // Chemosphere. 2014. Vol. 104.

  36. Singh H., Singh N.B., Singh A., Hussain J. Exogenous application of salicylic acid to alleviate glyphosate stress in Solanum lycopersicum // Int. J. Veg. Sci. 2017. Vol. 23.

  37. Singh H, Singh N.B., Singh A. et al. Physiological and biochemical roles of nitric oxide against toxicity produced by glyphosate herbicide in Pisum sativum // Russ. J. Plant Physiol. 2017. Vol. 64.

  38. Soares C., Pereira R., Spormann S., Fidalgo F. Is soil contamination by a glyphosate commercial formulation truly harmless to non-target plants? Evaluation of oxidative damage and antioxidant responses in tomato // Environ. Poll. 2019. Vol. 247.

  39. Soares C., Spormann S., Fidalgo F. Salicylic acid improves the performance of the enzymatic antioxidant system of barley exposed to glyphosate // Free Radic. Biol. Med. 2018. Vol. 120.

  40. Tang F.H.M., Jeffries T.C., Vervoort R.V. et al. Microcosm experiments and kinetic modeling of glyphosate biodegradation in soils and sediment // Sci. Total Environ. 2019. Vol. 658.

  41. Tejada M. Evolution of soil biological properties after addition of glyphosate, diflufenican and glyphosate + diflufenican herbicides // Chemosphere. 2009. Vol. 76.

  42. Yao M., Henny C., Maresca J.A. Freshwater bacteria release methane as a by-product of phosphorus acquisition //Appl. Environ. Microbiol. 2016. Vol. 82.

  43. Zabaloy M.C., Zanini G.P., Bianchinotti V. et al. Herbicides in the soil environment: linkage between bioavailability and microbial ecology // Herbicides, Theory and Applications. Croatia, 2011.

  44. Zhan H., Feng Y., Fan X., Chen S. Recent advances in glyphosate biodegradation // Appl. Microbiol. Biotechnol. 2018. Vol. 102.


PDF, ru

Received: 01/15/2020

Accepted: 01/20/2020

Accepted date: 09/30/2020

Keywords: amino-methyl-phosphonic acid; polymerase chain reaction; phoC; phoD; nifH

Available in the on-line version with: 30.09.2020

  • To cite this article:
Issue 3, 2020