ISSN 0137-0944
eISSN 2949-6144
En Ru
ISSN 0137-0944
eISSN 2949-6144
Structure of microbe complexes in modeling of polymetallic pollution and remediation of agro-soddy-podzolic soils

Structure of microbe complexes in modeling of polymetallic pollution and remediation of agro-soddy-podzolic soils

Abstract

Under the conditions of a model vegetation experiment (30 days), the responses of microbial communities of agro-soddy-podzolic soil of two sites (Chashnikovo, Moscow region) with different organic carbon content (Corg 3,86 and 1,30%) to polymetallic pollution with heavy metals (HM: Cu 660, Zn 1100, Pb 650 mg/kg) and treatment with biochar (5%) and lignohumate (0,25%) Methods of classical inoculation on Czapek agar and analysis of soil lipid profiles by gas chromatography—mass spectrometry, an assessment of the differences in abundance colony forming units (CFU), the biomass of fungi and bacteria, the diversity of cultivated fungi in humus-rich and humus-poor soil. HMs did not have a significant effect on the number of CFU and the number of cultural-morphological types of colonies, but they reduced the biomass of fungi and bacteria in both soils, while this decrease was much more pronounced in a weakly humus soil. In addition, the differences between the soils manifested themselves in a different increase in the proportion of resistant melanized forms of fungi under the influence of HM in a highly humified soil — by 25,9%, and in a weakly humified soil — by 45,7%. The sensitivity and universal significance of structural indicators as indicators of the stability of microbial complexes under chemical contamination of soils of different humus content are discussed; among the studied, the most sensitive and reliable indicators include the assessment of the proportion of melanized fungi.

References

  1. Andreeva О. A., Kozhevin Р.А. Optimization of natural communities of soil microorganisms as a way to create microbial fertilizers // Moscow Univ. Soil Sci. Bull. 2014. Vol. 69, N 4.

  2. Barrios E., Coutinho H.I.C., Medeiros C.A. Participatory Knowledge Integration on Indicators of Soil Quality — Methodological Guide. Nairobi, 2012.

  3. Bobbie R.J., White D.C. Characterization of benthic microbial community structure by high-resolution gas chromatography of Fatty Acid methyl esters // Appl. Environ. Microbiol. 1980. Vol. 39. DOI: 10.1128/aem.39.6.12121222.1980

  4. Biinemann E.K., Bongiorno G., Bai Z. et al. Soil quality — A critical review // Soil Biol. Biochem. 2018. Vol. 120. DOI: 10.1016/j.soilbio.2018.01.030

  5. Creamer R.E., Schulte R.P.O., Stone D.et al. Measuring basal soil respiration across Europe: Do incubation temperature and incubation period matter? // Ecol. Indicators. 2014. Vol. 36. DOI: 10.1016/j.ecolind.2013.08.015

  6. Gonzalez-Quinones A., Stockdale E. A., Banning N.C. et al. Soil microbial biomass — Interpretation and consideration for soil monitoring // Soil Res. 2011. Vol. 49. DOI: 10.1071/sr10203

  7. Heijden M.G.A. van der, Bardgett R.D., Straalen N.M. van.The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems // Ecol. Lett. 2008. Vol. 11. DOI: 10.1111/j.l4610248.2007.01139.x

  8. Hofman J., Dusek L., Klanova J. et al. Monitoring microbial biomass and respiration in different soils from the Czech Republic — a summary of results // Environ. Internat. 2004. Vol. 30, N 1. DOI: 10.1016/S0160-4120(03) 00142-9

  9. Kozhevin P.A., Zhebrak I.S., Maslova O.A.The role of soil microorganisms in environmental and food security // Moscow Univ. Soil Sci. Bull. 2017. Vol. 72. https:// doi.org/10.3103/S0147687417050039

  10. Lehman R.M., Cambardella C.A., Stott D.E.et al. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation // Sustainability. 2015. Vol. 7.

  11. Margesin R., Minerbi S., Schinner F. Long-term monitoring of soil microbiological activities in two forest sites in South Tyrol in the Itahan Alps // Microbes Environ. 2014. Vol. 29, Is. 3. DOI: 10.1264/jsme2.ME14050

  12. Osipov G.A.yTurova E.S.Studying species composition of microbial communities with the use of gas chromatography—mass-spectrometry. Microbial community of kaolin// FEMS Microbiol. Rev. 1997. Vol. 20.

  13. Ouyang W., GengX., Huang W.et al. Soil respiration characteristics in different land uses and response of soil organic carbon to biochar addition in high-latitude agricultural area// Environ. Sci. Pollut. Res. 2016. Vol. 23.

  14. Slapakova B., Jerabkova J., Vorisek K.et al. The biochar effect on soil respiration and nitrification // Plant Soil Environ. 2018. Vol. 64. DOI: 10.17221/13/2018-PSE

  15. Terekhova V.A. Soil bioassay: Problems and approaches//Eurasian Soil Sci. 2011. Vol. 44, N 2. DOI: 10.1134/ S1064229311020141

  16. Xu Y., Seshadry B., Solan N.et al. Microbial functional diversity and carbon use feedback in soils as affected by heavy metals // Environ. Intern. 2019. Vol. 125. DOI: 10.1016/j.envint.2019.01.071

  17. Yang Z., Liu S., Zheng D., Feng S. Effects of cadmium, zinc and lead on soil enzyme activities // J. Environ. Sci. 2006. Vol. 18, N6.
PDF, ru

Received: 07/14/2020

Accepted: 07/25/2020

Accepted date: 03/30/2021

Keywords: bioindication; polymetallic pollution; micromycetes; bacteria; lipid profile of soil; organic carbon; diversity of microorganisms; lignohumate; biochar

Available in the on-line version with: 30.03.2021

  • To cite this article:
Issue 1, 2021