ISSN 0137-0944
eISSN 2949-6144
En Ru
ISSN 0137-0944
eISSN 2949-6144
Regulatory effect of nitrogen on the formation and accumulation of secondary metabolites in diff erent genotypes of Camellia sinensis (L.) kuntze

Regulatory effect of nitrogen on the formation and accumulation of secondary metabolites in diff erent genotypes of Camellia sinensis (L.) kuntze

Abstract

Soil N deficiency is one of the main constraints limiting high tea yields worldwide, particularly in Russia. Besides, high dosages of N fertilizers are widely applied for tea plantations, resulting in agrogenic transformation of soils, environment pollution, and a decrease in the tea quality. One of the ways to reduce dosages of N fertilizers is the development of new cultivars with high N use efficiency. In this regard, the effect of genotype on biosynthesis and accumulation of valuable secondary metabolites in tea leaves was studied under optimal N supply and its deficiency in potted experiment. The study was conducted on the most promising local tea cultivars (Kolkhida and Karatum), grown on brown forest acidic soils in the humid subtropics of Russia. Using high-performance liquid chromatography, the contents of catechins, flavanols, alkaloids and theanine were evaluated in tea leaves. Our results showed that N availability stimulated the biosynthesis of theanine more than one order of magnitude and alkaloids (caffeine 3–5 times and theobromine 2–3 times) in both tea genotypes; however, it decreased the accumulation of several catechins and flavanols on average 1,5–2 times. Under optimal N supply, cv. Kolkhida displayed higher accumulation of theanine (by 30–60%) and gallated catechins (by 50%) in the leaves, however cv. higher accumulation of alkaloids (caffeine and theobromine) was observed in cv. Karatum (by 10–20%). N deficiency resulted in greater accumulation of simple and gallated catechins, as well as rutin in cv. Kolkhida, as compared to cv. Karatum. However, the content of the studied metabolites in cv. Karatum was more stable under different nitrogen levels, indicating its lower susceptibility to N deficiency.

References

1. Гинзбург К.Е., Щеглова Г.М., Вульфиус Е.В. Ускоренный метод сжигания почв и растений // Почвоведение. 1963. № 5. 2. Козлова Н.В., Малюкова Л.С., Керимзаде В.В. Концептуальная модель эволюции плодородия бурых лесных кислых почв чайных плантаций влажных субтропиков России при агрогенном воздействии. Сочи, 2020. 3. Малюкова Л.С. Оптимизация плодородия почв и применения минеральных удобрений при выращивании чая в России. Сочи, 2014. 4. Притула З.В., Бехтерев В.Н., Малюкова Л.С. Влияние мезоудобрений (Ca, Mg) на содержание кофеина в чайном растении в условиях влажных субтропиков России // Субтропическое и декоративное садоводство. 2015. № 54. 5. Bojórquez-Quintal E., Camilo E.M., Echevarría-Machado I. et al. Aluminum, a friend or foe of higher plants in acid soils // Front Plant Sci. 2017. № 8. 6. Britto D.T., Kronzucker H.J. NH4+ toxicity in higher plants: a critical review // J. Plant Physiol. 2002. Vol. 159(6). 7. Chen Z., Wang Z., Yuan H. et al. From tea leaves to factories: a review of research progress in L-theanine biosynthesis and production // J. Agric. Food Chem. 2021. Vol. 69(4). https://doi.org/10.1021/acs.jafc.0c06694 8. Chen C.S., Zhong Q.S., Lin Z.H. et al. Screening tea varieties for nitrogen efficiency // J. Plant Nutr. 2017. Vol. 40. 9. Cochetel N., Escudié F., Cookson S.J. et al. Root transcriptomic responses of grafted grapevines to heterogeneous nitrogen availability depend on rootstock genotype // J. Exp. Bot. 2017. Vol. 68(15). https://doi.org/10.1093/jxb/erx224 10. Dong F., Hu J., Shi Y. et al. Effects of nitrogen supply on flavonol glycoside biosynthesis and accumulation in tea leaves (Camellia sinensis) // Plant Physiology and Biochemistry. 2019. Vol. 128. https://doi.org/10.1016/j.plaphy.2019.02.017 11. Feldheim W., Yongvanit P., Cummings P.H. Investigation of the presence and significance of theanine in the tea plant // J. Sci Food Agric. 1986. Vol. 37. 12. Huang H., Yao Q., Xia E. et al. Metabolomics and transcriptomics analyses reveal nitrogen influences on the accumulation of flavonoids and amino acids in young shoots of tea plant (Camellia sinensis L.) associated with tea flavor // Journal of agricultural and food chemistry. 2018. Vol. 66(37). https://doi.org/10.1021/acs.jafc.8b01995 13. Liu X., Hu B., Chu C. Nitrogen assimilation in plants: current status and future prospects // J. of Genetics and Genomics. 2021. https://doi.org/10.1016/j.jgg.2021.12.006 14. Medici A., Krouk G. The primary nitrate response: a multifaceted signalling pathway // J. Exp. Bot. 2014. Vol. 65(19). https://doi.org/10.1093/jxb/eru245 15. Mohanpuria P., Kumar V., Yadav S.K. Tea caffeine: metabolism, functions, and reduction strategies // Food Sci. Biotechnol. 2010. Vol. 19. 16. Morita A., Ohta M., Yoneyama T. Uptake, transport and assimilation of 15N nitrate and 15N-ammonium in tea (Camellia sinensis L.) plants // Soil Sci Plant Nutr. 1998. Vol. 44(4). 17. O'Brien J.A., Vega A., Bouguyon E. et al. Nitrate transport, sensing, and responses in plants // Mol. Plant. 2016. Vol. 9. https://doi.org/10.1016/j.molp.2016.05.004 18. Ohkubo Y., Tanaka M., Tabata R. et al. Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition // Nat. Plants. 2017. Vol. 3. https://doi.org/10.1038/nplants.2017.29 19. Ruan, L.; Wang, L.Y.; Wei, K.; Cheng, H.; Li, H.L.; Shao, S.J. Comparative analysis of nitrogen spatial heterogeneity responses in low nitrogen susceptible and tolerant tea plants (Camellia sinensis). Sci. Hortic. 2019. Vol. 246 (2). https://doi.org/ 10.1016/j.scienta.2018.10.063 20. Ruan J., Ma L., Shi Y. et al. Uptake of fluoride by tea plant (Camellia sinensis L.) and the impact of aluminium // J. Sci. Food Agric. 2003. Vol. 83(13). https://doi.org/10.1002/jsfa.1546 21. Sari F., Velioglu Y.S. Changes in theanine and caffeine contents of black tea with different rolling methods and processing stages // European Food Research and Technology. 2013. Vol. 237(2). https://doi.org/10.1007/s00217-013-1984-z 22. Sun L., Liu Y., Wu L. et al. Comprehensive analysis revealed the close relationship between N/P/K status and secondary metabolites in tea leaves // ACS Omega. 2019. Vol. 4(1). https://doi.org/10.1021/ACSOMEGA.8B02611 23. Uefuji H., Tatsumi Y., Morimoto M. et al. Caffeine production in tobacco plants by simultaneous expression of three coffee N-methyltrasferases and its potential as a pest repellant // Plant Mol. Biol. 2005. Vol. 59(2). 24. Wang Y.C., Qian W.J., Li N.N. et al. Metabolic changes of caffeine in tea plant (Camellia sinensis (L.) O. Kuntze) as defense response to Colletotrichum fructicola // J. Agric. Food Chem. 2016. Vol. 64. 25. Wei C., Yang H., Wang S. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality // Proceedings of the National Academy of Sciences. 2018. Vol. 115(18). https://doi.org/10.1073/pnas.1719622115 26. Wei K., Liu M., Shi Y. et al. Metabolomics reveal that the high application of phosphorus and potassium in tea plantation inhibited amino-acid accumulation but promoted metabolism of flavonoid // Agronomy. 2022. Vol. 12(5). https://doi.org/10.3390/agron-omy12051086 27. Yan P., Wu L., Wang D. et al. Soil acidification in Chinese tea plantations // Sci Total Environ. 2020а. Vol. 715. 28. Yan Z., Zhong Y., Duan Y. et al. Antioxidant mechanism of tea polyphenols and its impact on health benefits // Animal Nutrition. 2020б. Vol. 6(2). https:// doi.org/10.1016/j.aninu.2020.01.001 29. Yang X., Ma L., Ji L. et al. Long-term nitrogen fertilization indirectly affects soil fungi community structure by changing soil and pruned litter in a subtropical tea (Camellia sinensis L.) plantation in China // Plant Soil. 2019. Vol. 444. https://doi.org/10.1007/s11104-019-04291-8 30. Zavalin A.A., Sokolov O.A. Nitrogen fluxes in the agroecosystem: from the ideas of D.N. Pryanishnikov to the present day. M., 2016. 31. Zhao J., Li P., Xia T. et al. Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model // Crit. Rev. Biotechnol. 2020. Vol. 40(5). https://doi.org/10.1080/07388551.2020.1752617 32. Zeng L., Zhou X., Liao Y. et al. Roles of specialized metabolites in biological function and environmental adaptability of tea plant (Camellia sinensis L.) as a metabolite studying model // Journal of Advanced Research. 2021. Vol. 34. https://doi.org/10.1016/j.jare.2020.11.004
PDF, ru

Received: 10/13/2023

Accepted: 12/14/2023

Accepted date: 03/25/2024

Keywords: tea culture; nitrogen fertilizers; tea varieties; biosynthesis; catechins; alkaloids; flavanols; theanine

DOI: 10.55959/MSU0137-0944-17-2024-79-1-61-69

Available in the on-line version with: 25.03.2024

  • To cite this article:
Issue 1, 2024