ISSN 0137-0944
eISSN 2949-6144
En Ru
ISSN 0137-0944
eISSN 2949-6144
Antimicrobial activity of specialised metabolites of soil streptomycetes-chitinolytic

Antimicrobial activity of specialised metabolites of soil streptomycetes-chitinolytic

Abstract

One hundred and fifty strains of streptomycetes were isolated from grey and dark grey forest soils, as well as from typical chernozem. The isolated strains were analyzed in Vitro for antimicrobial activity on nutrient media and in grey forest soil against twenty-three collection pathogenic test cultures of fungi and bacteria. Four biologically active isolates with a wide spectrum of action were identified and deposited in the All-Russian Collection of industrial microorganisms of the National Research Centre Kurchatov Institute. They were identified and deposited under the following numbers: Streptomyces xiamenensis TB ВКПМ Ас-2204, Streptomyces anulatus TG ВКПМ Ас-2203, Streptomyces sindenensis TK ВКПМ Ас-2205, Streptomyces flavovirens TT ВКПМ АС-2202. A study of the effect of pre-sowing treatment of wheat seeds by the 15-day cultural liquids of the strains S. xiamenensis TB ВКПМ Ac-2204, S. anulatus TG ВКПМ Ac-2203, S. sindenensis TK ВКПМ Ac-2205 on germination rates and infection with F. graminearum revealed that they inhibited the growth of a pathogenic fungus. Besides, they improved seed vigour and germination of wheat. The resulting strains of soil actinomycetes can be used in biotechnology with an aim to create the new bioinoculants when dealing with phytopathogenic bacteria and fungi. The strains can also be used for stimulating the plant growth, as well as for soil bioremediation in organic farming. Through the application of the HPLC method, specialized antimicrobial metabolites of monosporic strain suspensions were identified. The identified antibiotics are N-Butylbenzenesulfonamide, 1-(1H-Benzo[d]imidazol-2-yl)ethan-1-ol, 2-[(3S)-1-(Cyclohexylmethyl)-3-pyrrolidinyl]-1H-benzimidazole-5-carbonitrile, Cyclo(leucylprolyl), Cyclo(phenylalanyl-prolyl). The identified antiseptics are Cetrimonium and Carvone. The identified phytohormone is auxin indole-3-acetic acid (IAA). Observation of the dynamics of development of introduced actinobacteria under study in soil samples showed high activity of streptomycetes that use chitin. Analysis of the diversity of the prokaryotic complex of the studied soil samples with the application of the high-throughput sequencing of the conserved region of the 16S rRNA gene method revealed during the introduction of S. xiamenensis TB ВКПМ Ac-2204 that its controlling role in the microbial community is due to its antibiotic-forming activity.

References

1. Варламов В.П., Ильина А.В., Шагдарова Б.Ц. и др. Хитин/хитозан и его производные: фундаментальные и прикладные аспекты // Успехи биологической химии. 2020. Т. 60. 2. Зенова Г.М. Почвенные актиномицеты редких родов. М., 2000. 3. Новикова И.И. Биологическое обоснование создания и применения полифункциональных биопрепаратов на основе микробов-антагонистов для фитосанитарной оптимизации агроэкосистем: Дис. … д-ра. биол. наук. СПб., 2005. 4. Манучарова Н.А., Власенко А.Н., Белова Э.В. и др. Методические аспекты определения использования хитина почвенными микроорганизмами // Известия РАН. Сер. Биол. 2008. № 5. 5. МУК 4.2.3695-21. 4.2. Методы контроля. Биологические и микробиологические факторы. Методы микробиологического контроля почвы. Методические указания утв. Роспотребнадзором 02.06.2021. 6. Сизенцов А.Н. Методы определения антибиотикопродуктивности и антибиотикорезистентности: Методические указания к лабораторному практикуму. Оренбург, 2009. 7. Amann R.I., Binder B.J., Olson R.J. et al. Combination of 16S rRNA-Targeted Oligonucleotide Probes with Flow Cytometry for Analyzing Mixed Microbial Populations // Appl. Environ. Microbiol. 1990. Vol. 56. https://doi.org/10.1128/aem.56.6.1919-1925 8. Andrzejewska M., Yepez-Mulia L., Tapia A. et al. Synthesis, and antiprotozoal and antibacterial activities of S-substituted 4,6-dibromo- and 4,6-dichloro-2-mercaptobenzimidazoles // Eur. J. Pharm Sci. 2004. Feb; 21(2-3):323-9. https://doi.org/10.1016/j.ejps.2003.10.024 9. Bai Y., Eijsink V.G., Kielak A.M. et al. Genomic comparison of chitinolytic enzyme systems from terrestrial and aquatic bacteria // Environmental Microbiology. 2016. Vol. 18. 10. Baier F., Copp J.N., Tokuriki N. Evolution of enzyme superfamilies: comprehensive exploration of sequence−function relationships // Biochemistry. 2016. Vol. 55. 11. Berdy J. Bioactive Microbial Metabolites // J. Antibiot. 2005. Vol. 58, № 1. 12. Chen C., Ye Y., Wang R. et al. Streptomyces nigra sp. nov. Is a Novel Actinobacterium Isolated From Mangrove Soil and Exerts a Potent Antitumor Activity in Vitro // Front Microbiol. 2018, Jul 18; Vol. 9:1587. https://doi.org/10.3389/fmicb.2018.01587 13. De Simeis D., Serra S. Actinomycetes: A Never-Ending Source of Bioactive Compounds — An Overview on Antibiotics Production // Antibiotics. 2021. Vol. 10, 483. https://doi.org/10.3390/antibiotics10050483 14. Hamaki T., Suzuki M., Fudou R. et al. Isolation of novel bacteria and actinomycetes using soil-extra agar medium // Journal of bioscience and bioengineering. 2005. Vol. 99, № 5. 15. Kim К.К., Kanga J.G., Moonc S.S. et al. Isolation and Identification of Antifungal 7V-Butylbenzenesulphonamide Produced by Pseudomonas sp. AB2 // The journal of antibiotics. 2000. https://doi.org/10.7164/antibiotics.53.131 16. Kwak M.-K., Liu R., Kim M.-K. et al. Cyclic dipeptides from lactic acid bacteria inhibit the proliferation of pathogenic fungi // J. Microbiol. 2014. Vol. 52. http://dx.doi.org/10.1007/s12275-014-3520-7 17. Li H., Liu L., Zhang S. et al. Identification of antifungal compounds produced by Lactobacillus casei AST18. // Curr. Microbiol. 2012. Vol. 65. http://dx.doi.org/10.1007/s00284-012-0135-2 18. Liang H., Zhou G., Ge Y. et al. Elucidating the inhibition of peptidoglycan biosynthesis in Staphylococcus aureus by albocycline, a macrolactone isolated from Streptomyces maizeus // Bioorg. Med. Chem. 2018, Jul 23. http://dx.doi.org/10.1016/j.bmc.2018.05.017 19. Managamuri U., Vijayalakshmi M., Ganduri VSRK et al. Isolation, identification, optimization, and metabolite profiling of Streptomyces sparsus VSM-30 // 3 Biotech. 2017. № 7(3). https://doi.org/10.1007/s13205-017-0835-1 20. Manucharova N.A., Ksenofontova N.A., Karimov T.D. et al. Changes in the Phylogenetic Structure of the Metabolically Active Prokaryotic Soil Complex Induced by Oil Pollution // Microbiology. 2020. Vol. 89. https://doi.org/10.1134/S0026261720020083 21. Rhee K.-H. Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus, Pyricularia oryzae // J. Microbiol. Biotechnol. 2003. Vol. 13. 22. Tahlan S., Kumar S., Narasimhan B.Antimicrobial potential of 1 H-benzo[d]imidazole scafold: a review // BMC Chemistry. 2019. https://doi.org/10.1186/s13065-019-0521-y 23. Kitano T.I., de Figueiredo R.I.A., Lacava P.T. The Potential Use of Actinomycetes as Microbial Inoculants and Biopesticides in Agriculture // Soil Sci. 2022. 2:833181. https://doi.org/10.3389/fsoil.2022.833181 24. Takamatsu S., Kim Y.P., Hayashi M. et al. A new inhibitor of melanogenesis, albocycline K3, produced by Streptomyces sp. OH-3984 // J. Antibiot (Tokyo). 1996. https://doi.org/10.7164/antibiotics.49.485. PMID: 8682726 25. Kim Y.J., Kim J.-H., Rho J.-Y. Antifungal Activities of Streptomyces blastmyceticus Strain 12-6 Against Plant Pathogenic Fungi // Mycobiology. 2019. Vol. 47, № 3.
PDF, ru

Received: 11/02/2023

Accepted: 12/14/2023

Accepted date: 03/25/2024

Keywords: soil; streptomyces; specialized metabolites; soil; antibiotics; actinomycetes; streptomycetes; chitinolytic

DOI: 10.55959/MSU0137-0944-17-2024-79-1-51-60

Available in the on-line version with: 25.03.2024

  • To cite this article:
Issue 1, 2024