ISSN 0137-0944
eISSN 2949-6144
En Ru
ISSN 0137-0944
eISSN 2949-6144
Optimization of nitrogen nutrition of grasses on oil-polluted oligotrophic peat soil

Optimization of nitrogen nutrition of grasses on oil-polluted oligotrophic peat soil

Abstract

The paper demonstrates the importance of creating optimal conditions for mineral nutrition of cereal grasses and microorganisms in oligotrophic oil polluted peat soil under remediation. To establish the effectiveness of using various forms of nitrogen fertilizers in oil pollution, changes in the agrochemical properties and enzymatic activity of the soil, the productivity of cereal grasses and the amount of DNA prokaryotes were investigated. A significant increase in the productivity of plants and the number of bacteria and archaea in oligotrophic peat soil is shown when optimizing nitrogen nutrition, especially pronounced when introducing the ammonium-nitrate form of fertilizer. There is a close relationship between catalase activity in soil and residual oil content in soil.

References

1. Манучарова Н.А. Молекулярно-биологические методы в почвоведении и экологии. М., 2014. 2. Манучарова Н.А., Ксенофонтова Н.А., Белов А.А. и др. Прокариотный компонент нефтезагрязненной торфяной олиготрофной почвы при разном уровне минерального питания // Почвоведение. 2021. № 1. https://doi.org/10.31857/s0032180x2101010x 3. Минеев В.Г. Практикум по агрохимии. М., 2001. 4. Сергатенко С.Н., Федорова И.Л., Ингатова Т.Д. Влияние нефтяного загрязнения на активность почвенных ферментов классов оксидоредуктаз и гидролаз // Вестн. Ульяновской государственной сельскохозяйственной академии. 2022. Т. 230, № 3 (59). 5. Смирнова Т.С., Панина Ю.Ю. Мониторинг углеводородного загрязнения почвы посредством анализа ее ферментативной активности // Защита окружающей среды в нефтегазовом комплексе. 2015. № 12. 6. Толпешта И.И., Трофимов С.Я., Эркенова М.И. и др. Лабораторное моделирование последовательного аэробного и анаэробного разложения нефтепродуктов в загрязненном нефтью верховом торфе // Почвоведение. 2015. № 3. 7. Хазиев Ф.Х. Методы почвенной энзимологии. М., 2005. 8. Agnello A.C., Bagard, M., van Hullebusch, E.D. et al. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation // Science of the Total Environment. 2016. Vol. 563–564. https://doi.org/10.1016/j.scitotenv.2015.10.061 9. Joner E.J., Corgié S.C., Amellal N. et al. Nutritional constraints to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere // Soil Biology and Biochemistry. 2002. Vol. 34, № 6. https://doi.org/10.1016/S0038-0717(02)00018-4 10. Hesnawi R.M., Adbeib M.M. Effect of Nutrient Source on Indigenous Biodegradation of Diesel Fuel Contaminated Soil // APCBEE Procedia. 2013. Vol. 5. https://doi.org/10.1016/j.apcbee.2013.05.093 11. Khan M., Biswas B., Smith E. et al. Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil – a review // Chemosphere. 2018а. Vol. 212. https://doi.org/10.1016/j.chemosphere.2018.08.09 12. Khan M., Biswas B., Smith E. et al. Microbial diversity changes with rhizosphere and hydrocarbons in contrasting soils // Ecotoxicology and Environmental Safety. 2018b. Vol. 156. https://doi.org/10.1016/j.ecoenv.2018.03.006 13. Tao K., Liu X., Chen X. et al. Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis // Bioresource Technology. 2017. Vol. 224. https://doi.org/10.1016/j.biortech.2016.10.073 14. Tesar M., Reichenauer T., Sessitsch A. Bacterial rhizosphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel // Soil Biology and Biochemistry. 2002. Vol. 34, № 12. https://doi.org/10.1016/S0038-0717(02)00202-X 15. Varjani S.J., Upasani V.N. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants // International Biodeterioration & Biodegradation. 2017. Vol. 120. https://doi.org/10.1016/j.ibiod.2017.02.006 16. Wang Y., Feng G., Lin Q. et al. Effects of crude oil contamination on soil physical and chemical properties in Momoge wetland of China // Chin. Geogr. Sci. 2013. Vol. 23, № 6. https://doi.org/10.1007/s11769-013-0641-6 17. Yan L., Penttinen P., Simojoki A. et al. Perennial crop growth in oil-contaminated soil in a boreal climate // Science of The Total Environment. 2015. Vol. 532. https://doi.org/10.1016/j.scitotenv.2015.06.052 18. Ying X., Dongmei G., Judong L. et al. Plant-microbe Interactions to Improve Crude Oil Degradation // Energy Procedia. 2011. Vol. 5. https://doi.org/10.1016/j.egypro.2011.03.149
PDF, ru

Received: 11/10/2023

Accepted: 12/08/2023

Accepted date: 03/25/2024

Keywords: oil pollution; phytoremediation; mineral fertilizers; soil enzymatic activity; number of prokaryotes

DOI: 10.55959/MSU0137-0944-17-2024-79-1-42-50

Available in the on-line version with: 25.03.2024

  • To cite this article:
Issue 1, 2024