ISSN 0137-0944
eISSN 2949-6144
En Ru
ISSN 0137-0944
eISSN 2949-6144
Dissolved organic matter of chernozems of diff erent uses: the relationship of structural features and mineral composition

Dissolved organic matter of chernozems of diff erent uses: the relationship of structural features and mineral composition

Abstract

Structural peculiarities of the organic component of dissolved organic matter (DOM) of typical chernozems (Protocalcic Chernozem), differing in the principal direction of soil organic matter transformation (accumulation or mineralization), has been analyzed in relation to the mineral composition of DOM. To characterize the structural features of the organic component, spectrometry in the ultraviolet and visible range and fluorescence spectroscopy were applied as approaches most often used for these purposes due to the expressiveness and accessibility of the instrumental design. The content of mineral elements (Al, B, Ba, Ca, Fe, K, Li, Mg, Mn, Na, P, S, Si, Zn) was carried out by optical emission spectrometry with inductively coupled plasma. DOM of arable chernozems, where the mineralization of organic matter is the prevalent process of organic matter transformation, was found to possess higher values of the indexes E2/E3, BIX and SUVA254. The latter indicates a smaller MM, a greater contribution of organic matter of microbial origin and aromatic structures to the composition of DOM as compared to soils not involved in agricultural use. The analysis of the mineral component showed Si and Ca were the most abundant elements in the DOM. The involvement of chernozems in agricultural use resulted in a decrease in Ca content and an increase in Si, Fe and Al, what reflected an increase in the degree of weathering of the mineral matrix of chernozems. The conducted rank correlation analysis showed the presence of significant relationships between the structural characteristics of the DOM (E2/E3, SUVA254, MM, BIX, T) and the content of mineral elements (Ca, Al, Fe, Si) indicating the influence of weathering processes on the formation of the soil DOM.

References

1. Болотов А.Г., Беховых Ю.В., Сизов Е.Г. и др. Физико-химические свойства черноземов под лиственными лесополосами // Вестн. Алтайского ГАУ. 2014. Т. 115, № 5. 2. Гришина Л.А., Копцик Г.Н., Макаров М.И. Трансформация органического вещества почв. М., 1990. 3. Куликова Н.А. Влияние водорастворимых компонентов почв на размер и электрокинетический потенциал наноалмазов // Почвоведение. 2020. № 7. https://doi.org/10.31857/S0032180X20070084 4. Куликова Н.А., Перминова И.В. Сравнительная характеристика элементного состава водорастворимых гуминовых веществ, гуминовых и фульвокислот дерново-подзолистых почв // Вестн. Моск. ун-та. Сер. 17. Почвоведение. 2010. № 4. 5. Макаров М.И., Шулева М.С., Малышева Т.И. и др. Растворимость лабильных форм углерода и азота почв в K2SO4 разной концентрации // Почвоведение. 2013. № 4. 6. Первова Н.Е., Евдокимова Т.Н. Состав почвенных растворов в подзоне южной тайги // Почвоведение. 1984. № 1. 7. Попов А.И., Коноплина Л.Ю., Комолкина Н.А. и др. Компонентный состав почвенного органического вещества // The scientific heritage. 2021. № 65. 8. Холодов В.А., Ярославцева Н.В., Фарходов Ю.Р. и др. Оптические характеристики экстрагируемых фракций органического вещества типичных черноземов в многолетних полевых опытах // Почвоведение. 2020. № 6. https://doi.org/10.31857/S0032180X20060052 9. Begum M.S., Park J.H., Yang L. et al. Optical and molecular indices of dissolved organic matter for estimating biodegradability and resulting carbon dioxide production in inland waters: A review // Water Res. 2023. Vol. 228 (Pt A). Article ID 119362. https://doi.org/10.1016/j.watres.2022.119362 10. Chang S.C., Wang C.P., Feng C.M. et al. Soil fluxes of mineral elements and dissolved organic matter following manipulation of leaf litter input in a Taiwan Chamaecyparis forest // Forest Ecol. Manage. 2007. Vol. 242, № 2–3. https://doi.org/10.1016/j.foreco.2007.01.025 11. Fang Q., Lu A., Hong H. et al. Mineral weathering is linked to microbial priming in the critical zone // Nat. Commun. 2023. Vol. 14, № 345. https://doi.org/10.1038/s41467-022-35671-x 12. Gao S.-J., Zhao C., Shi Z.-H. et al. Spectroscopic characteristics of dissolved organic matter in afforestation forest soil of Miyun district, Beijing // J. Analyt. Meth. Chem. 2016. https://doi.org/10.1155/2016/1480857 13. Ge Z., Gao L., Ma N. et al. Variation in the content and fluorescent composition of dissolved organic matter in soil water during rainfall-induced wetting and extract of dried soil // Sci. Total Environ. 2021. Vol. 791. Article ID 148296. https://doi.org/10.1016/j.scitotenv.2021.148296 14. Hansen A.M., Kraus T.E.C., Pellerin B.A. et al. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation // Limnol. Oceanogr. 2016. Vol. 61, № 3. https://doi.org/10.1002/lno.10270 15. Hartnett H.E. Dissolved Organic Matter (DOM) // White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. 2018, Cham. https://doi.org/10.1007/978-3-319-39193-9_155-1 16. Jones D.L., Simfukwe P., Hill P.W. et al. Evaluation of dissolved organic carbon as a soil quality indicator in national monitoring schemes // PLoS One. 2014. Vol. 9, № 3. Article ID: e90882. https://doi.org/10.1371/journal.pone.0090882 17. Li Y., Chen Z., Chen J. et al. Oxygen availability regulates the quality of soil dissolved organic matter by mediating microbial metabolism and iron oxidation // Glob. Chang. Biol. 2022. Vol. 28, № 24. https://doi.org/10.1111/gcb.16445 18. Peng Y., Xu H., Wang Z. et al. Responses of the content and spectral characteristics of dissolved organic matter in intercropping soil to drought in northeast China // Plant Soil. 2023. Published 14 February 2023. https://doi.org/10.1007/s11104-023-05931-w 19. Qin X., Yao B., Jin L. et al. Characterizing soil dissolved organic matter in typical soils from China using fluorescence EEM–PARAFAC and UV–visible absorption // Aquat. Geochem. 2020. № 26. https://doi.org/10.1007/s10498-019-09366-7 20. Roth V.-N., Lange M., Simon C. et al. Persistence of dissolved organic matter explained by molecular changes during its passage through soil // Nat. Geosci. 2019. № 12. https://doi.org/10.1038/s41561-019-0417-4 21. Setia R., Rengasamy P., Marschner P. Effect of exchangeable cation concentration on sorption and desorption of dissolved organic carbon in saline soils // Sci. Total Environ. 2013. № 465. https://doi.org/10.1016/j.scitotenv.2013.01.010 22. Song Z.L., Liu C.Q., Muller K. et al. Silicon regulation of soil organic carbon stabilization and its potential to mitigate climate change // Earth Sci. Rev. 2018. № 185. https://doi.org/10.1016/j.earscirev.2018.06.020 23. Visconti F., de Paz J.M., Rubio J.L. What information does the electrical conductivity of soil water extracts of 1 to 5 ratio (w/v) provide for soil salinity assessment of agricultural irrigated lands? // Geoderma. 2010. Vol. 154. https://doi.org/10.1016/j.geoderma.2009.11.012 24. Wang Y.-H., Zhang P., He C. et al. Molecular signatures of soil-derived dissolved organic matter constrained by mineral weathering // Fundam. Res. 2023. Vol. 3, № 3. https://doi.org/10.1016/j.fmre.2022.01.032 25. Wen Y., Li H., Xiao J. et al. Insights into complexation of dissolved organic matter and Al(III) and nanominerals formation in soils under contrasting fertilizations using two-dimensional correlation spectroscopy and high resolution-transmission electron microscopy techniques // Chemosphere. 2014. № 111. https://doi.org/10.1016/j.chemosphere.2014.03.078 26. Xiao P., Xiao B., Adnan M. Effects of Ca2+ on migration of dissolved organic matter in limestone soils of the southwest China karst area // Land Degrad. Dev. 2021. Vol. 32, № 17. https://doi.org/10.1002/ldr.4092 27. Xu Y., Peng Z., Tu Y. et al. Combining organic and inorganic fertilization increases rice yield and soil nitrogen and carbon: dissolved organic matter chemodiversity and soil microbial communities // Plant Soil. 2023. Published 07 August 2023. https://doi.org/10.1007/s11104-023-06203-3 28. Yu G.H., Wu M.J., Wei G.R. et al. Binding of organic ligands with Al(III) in dissolved organic matter from soil: implications for soil organic carbon storage // Environ. Sci. Technol. 2012. № 46. https://doi.org/10.1021/es3002212 29. Zhang Y., Wang Y., Zhou C. et al. Long-term fertilization affects chemical composition of dissolved organic carbon by changing soil properties // Soil Sci. Soc. Am. J. 2022. № 86. https://doi.org/10.1002/saj2.20459
PDF, ru

Received: 11/07/2023

Accepted: 12/08/2023

Accepted date: 03/25/2024

Keywords: arable soils; UV-visible spectroscopy; fluorescence spectroscopy; gel permeation chromatography; weathering

DOI: 10.55959/MSU0137-0944-17-2024-79-1-24-32

Available in the on-line version with: 25.03.2024

  • To cite this article:
Issue 1, 2024